Time-dependent rotational stability of dynamic planets with elastic lithospheres
نویسنده
چکیده
True polar wander (TPW), a reorientation of the rotation axis relative to the solid body, is driven by mass redistribution on the surface or within the planet and is stabilized by two aspects of the planet’s viscoelastic response: the delayed viscous readjustment of the rotational bulge and the elastic stresses in the lithosphere. The latter, following Willemann (1984), is known as remnant bulge stabilization. In the absence of a remnant bulge, the rotation of a terrestrial planet is said to be inherently unstable. Theoretical treatments have been developed to treat the final (equilibrium) state in this case and the time-dependent TPW toward this state, including nonlinear approaches that assume slow changes in the inertia tensor. Moreover, remnant bulge stabilization has been incorporated into both equilibrium and linearized, time-dependent treatments of rotational stability. We extend the work of Ricard et al. (1993) to derive a nonlinear, time-dependent theory of TPW that incorporates stabilization by both the remnant bulge and viscous readjustment of the rotational bulge. We illustrate the theory using idealized surface loading scenarios applied to models of both Earth and Mars. We demonstrate that the inclusion of remnant bulge stabilization reduces both the amplitude and timescale of TPW relative to calculations in which this stabilization is omitted. Furthermore, given current estimates of mantle viscosity for both planets, our calculations indicate that departures from the equilibrium orientation of the rotation axis in response to forcings with timescale of 1 Myr or greater are significant for Earth but negligible for Mars.
منابع مشابه
Reorientation of planets with lithospheres: The effect of elastic energy
It is commonly assumed that internal energy dissipation will ultimately drive planets to principal axis rotation, i.e., where the rotation vector is aligned with the maximum principle axis, since this situation corresponds to the minimum rotational energy state. This assumption simplifies long-term true polar wander (TPW) studies since the rotation pole can then be found by diagonalizing the ap...
متن کاملDynamic Stability of Functionally Graded Beams with Piezoelectric Layers Located on a Continuous Elastic Foundation
This paper studies dynamic stability of functionally graded beams with piezoelectric layers subjected to periodic axial compressive load that is simply supported at both ends lies on a continuous elastic foundation. The Young’s modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton’s principle, the governing dynamic equation is established. The eff...
متن کاملDynamic Stability of Nano FGM Beam Using Timoshenko Theory
Based on the nonlocal Timoshenko beam theory, the dynamic stability of functionally gradded (FG) nanoeams under axial load is studied in thermal environment, with considering surface effect. It is used power law distribution for FGM and the surface stress effects are considered based on Gurtin-Murdoch continuum theory. Using Von Karman geometric nonlinearity, governing equations are derived bas...
متن کاملDynamic responses of poroelastic beams with attached mass-spring systems and time-dependent, non-ideal supports subjected to moving loads: An analytical approach
The present study is the first to analyze the dynamic response of a poroelastic beam subjected to a moving force. Moreover, the influences of attached mass-spring systems and non-ideal supports (with local movements in the supporting points or base due to the presence of factors such as gaps, unbalanced masses, and friction or seismic excitations) on the responses were investigated. Non-ideal s...
متن کاملDynamic Stability of Single Walled Carbon Nanotube Based on Nonlocal Strain Gradient Theory
This paper deals with dynamic Stability of single walled carbon nanotube. Strain gradient theory and Euler-Bernouli beam theory are implemented to investigate the dynamic stability of SWCNT embedded in an elastic medium. The equations of motion were derived by Hamilton principle and non-local elasticity approach. The nonlocal parameter accounts for the small-size effects when dealing with nano-...
متن کامل